Show line numbers
Submit solution
Points:
10
Time limit:
5.0s
Memory limit:
256M
Author:
Problem types
Allowed languages
C#, Go, Java, Python
Necessitem incorporar la funció "Show line numbers" al nostre editor de codi...
Input Format
L'entrada és un codi font en vàries línies.
El codi font acaba amb la paraula
Constraints
-
Output Format
S'imprimirà el mateix codi font, però amb el número de línia a l'inici de cada línia; amb aquest format:
El número de línia ocuparà dos caràcters, després hi haurà un espai en blanc, després una barra vertical i després un altre espai.
Test Case 1
Input
hola
END
Output
1 | hola
Test Case 2
Input
if(b[0] >= a[1] || b[1] <= a[0]) return false;
return true;
END
Output
1 | if(b[0] >= a[1] || b[1] <= a[0]) return false;
2 | return true;
Test Case 3
Input
private static int recursiu(int fi, int[][] jobs) {
int max = 0;
for (int i = 0; i < jobs.length; i++)
if(jobs[i][0] >= fi)
max = Math.max(max, recursiu(jobs[i][1], jobs) + jobs[i][2]);
return max;
}
END
Output
1 | private static int recursiu(int fi, int[][] jobs) {
2 | int max = 0;
3 | for (int i = 0; i < jobs.length; i++)
4 | if(jobs[i][0] >= fi)
5 | max = Math.max(max, recursiu(jobs[i][1], jobs) + jobs[i][2]);
6 | return max;
7 | }
Test Case 4
Input
static double floydWarshall(double graph[][]) {
double dist[][] = new double[graph.length][graph.length];
int i, j, k;
for (i = 0; i < graph.length; i++)
for (j = 0; j < graph.length; j++)
dist[i][j] = graph[i][j];
for (k = 0; k < graph.length; k++)
for (i = 0; i < graph.length; i++)
for (j = 0; j < graph.length; j++)
if (i != k && j != k && i != j)
if (dist[i][k] * dist[k][j] > dist[i][j])
dist[i][j] = dist[i][k] * dist[k][j];
return dist[0][graph.length-1];
}
END
Output
1 | static double floydWarshall(double graph[][]) {
2 | double dist[][] = new double[graph.length][graph.length];
3 | int i, j, k;
4 |
5 | for (i = 0; i < graph.length; i++)
6 | for (j = 0; j < graph.length; j++)
7 | dist[i][j] = graph[i][j];
8 |
9 | for (k = 0; k < graph.length; k++)
10 | for (i = 0; i < graph.length; i++)
11 | for (j = 0; j < graph.length; j++)
12 | if (i != k && j != k && i != j)
13 | if (dist[i][k] * dist[k][j] > dist[i][j])
14 | dist[i][j] = dist[i][k] * dist[k][j];
15 |
16 | return dist[0][graph.length-1];
17 | }
Test Case 5
Input
static int min(String a, String b){
int[][] DP = new int[a.length()+1][b.length()+1];
for (int i = 0; i < b.length()+1; i++) {
DP[0][i] = i;
}
for (int i = 0; i < a.length()+1; i++) {
DP[i][0] = i;
}
for (int i = 1; i < a.length()+1; i++) {
for (int j = 1; j < b.length()+1; j++) {
int ADD = DP[i-1][j]+1;
int DEL = DP[i][j-1]+1;
int SUB = DP[i-1][j-1] + (a.charAt(i-1) != b.charAt(j-1) ? 1 : 0);
DP[i][j] = Math.min(ADD, Math.min(DEL, SUB));
}
}
Util.printMatrix(DP);
return DP[a.length()][b.length()];
}
END
Output
1 | static int min(String a, String b){
2 | int[][] DP = new int[a.length()+1][b.length()+1];
3 |
4 | for (int i = 0; i < b.length()+1; i++) {
5 | DP[0][i] = i;
6 | }
7 | for (int i = 0; i < a.length()+1; i++) {
8 | DP[i][0] = i;
9 | }
10 |
11 | for (int i = 1; i < a.length()+1; i++) {
12 | for (int j = 1; j < b.length()+1; j++) {
13 | int ADD = DP[i-1][j]+1;
14 | int DEL = DP[i][j-1]+1;
15 | int SUB = DP[i-1][j-1] + (a.charAt(i-1) != b.charAt(j-1) ? 1 : 0);
16 |
17 | DP[i][j] = Math.min(ADD, Math.min(DEL, SUB));
18 | }
19 | }
20 |
21 | Util.printMatrix(DP);
22 | return DP[a.length()][b.length()];
23 | }
Test Case 6
Input
public class CakeCutting {
static char[][] tarta;
public static void main(String[] args) throws FileNotFoundException {
Scanner sc = new Scanner(System.in);
while (sc.hasNextInt()) {
int rows = sc.nextInt();
int cols = sc.nextInt();
sc.nextLine();
tarta = new char[rows][cols];
for (int i = 0; i < rows; i++)
tarta[i] = sc.nextLine().toCharArray();
System.out.println(minCortes(0, rows, 0, cols));
}
}
static boolean areEqual(int i0, int i1, int j0, int j1) {
for (int i = i0; i < i1; i++)
for (int j = j0; j < j1; j++)
if (tarta[i][j] != tarta[i0][j0])
return false;
return true;
}
static int minCortes(int i0, int i1, int j0, int j1){
int[][][][] K = new int[i1+1][i1+1][j1+1][j1+1];
for (int m = 1; m <= i1; m++) {
for (int i = 0; i < i1 - m + 1; i++) {
for (int k = 1; k <= j1; k++) {
for (int j = 0; j < j1 - k + 1; j++) {
System.out.println(i + " " + (i+m) + " " +j + " " + (j+k));
if(areEqual(i,i+m,j,j+k)){
K[i][i+m][j][j+k] = 0;
} else {
int min = Integer.MAX_VALUE;
for (int ii = 1; ii < m; ii++) {
if (K[i][i+ii][j][j+k] + K[i+ii][i+m][j][j+k] < min) {
min = K[i][i+ii][j][j+k] + K[i+ii][i+m][j][j+k];
}
}
for (int jj = 1; jj < k; jj++) {
if (K[i][i+m][j][j+jj] + K[i][i+m][j+jj][j+k] < min) {
min = K[i][i+m][j][j+jj] + K[i][i+m][j+jj][j+k];
}
}
K[i][i+m][j][j+k] = min + 1;
}
}
}
}
}
return K[0][i1][0][j1];
}
}
END
Output
1 | public class CakeCutting {
2 |
3 | static char[][] tarta;
4 |
5 | public static void main(String[] args) throws FileNotFoundException {
6 | Scanner sc = new Scanner(System.in);
7 |
8 | while (sc.hasNextInt()) {
9 | int rows = sc.nextInt();
10 | int cols = sc.nextInt();
11 | sc.nextLine();
12 |
13 | tarta = new char[rows][cols];
14 | for (int i = 0; i < rows; i++)
15 | tarta[i] = sc.nextLine().toCharArray();
16 |
17 | System.out.println(minCortes(0, rows, 0, cols));
18 | }
19 | }
20 |
21 | static boolean areEqual(int i0, int i1, int j0, int j1) {
22 |
23 | for (int i = i0; i < i1; i++)
24 | for (int j = j0; j < j1; j++)
25 | if (tarta[i][j] != tarta[i0][j0])
26 | return false;
27 |
28 | return true;
29 | }
30 |
31 |
32 | static int minCortes(int i0, int i1, int j0, int j1){
33 | int[][][][] K = new int[i1+1][i1+1][j1+1][j1+1];
34 | for (int m = 1; m <= i1; m++) {
35 | for (int i = 0; i < i1 - m + 1; i++) {
36 | for (int k = 1; k <= j1; k++) {
37 | for (int j = 0; j < j1 - k + 1; j++) {
38 | System.out.println(i + " " + (i+m) + " " +j + " " + (j+k));
39 | if(areEqual(i,i+m,j,j+k)){
40 | K[i][i+m][j][j+k] = 0;
41 | } else {
42 | int min = Integer.MAX_VALUE;
43 | for (int ii = 1; ii < m; ii++) {
44 | if (K[i][i+ii][j][j+k] + K[i+ii][i+m][j][j+k] < min) {
45 | min = K[i][i+ii][j][j+k] + K[i+ii][i+m][j][j+k];
46 | }
47 | }
48 | for (int jj = 1; jj < k; jj++) {
49 | if (K[i][i+m][j][j+jj] + K[i][i+m][j+jj][j+k] < min) {
50 | min = K[i][i+m][j][j+jj] + K[i][i+m][j+jj][j+k];
51 | }
52 | }
53 | K[i][i+m][j][j+k] = min + 1;
54 | }
55 | }
56 | }
57 | }
58 | }
59 | return K[0][i1][0][j1];
60 | }
61 | }
CC BY-NC-SA 4.0